
Conquer Forms with

HTML5 and CSS3
Historically, forms have been a pain to style consistently cross-browser. They also
require JavaScript to validate the inputs and lack speciic input types to deal with
everyday information like telephone numbers, e-mail addresses, and URLs.

The good news is that HTML5 largely solves these common problems. Let's
get familiar with the new HTML5 form features and see how they alleviate our
traditional form-building burden.

Using HTML5 to code our forms brings an additional beneit when used for
responsive designs; it once more allows us to trim our code base to provide the
leanest possible pages for our users. For the browsers that don't support these new
features, we have tools to patch them up and bring them in line.

In this chapter, we will learn how to use HTML5 to:

•	 Easily insert placeholder text into relevant form ields
•	 Disable auto-completion of form ields where necessary
•	 Set certain ields to be required before submission
•	 Specify different input types such as e-mail, telephone number, and URL

•	 Create number range sliders for easy value selection

•	 Insert date and color pickers

•	 Learn how we can use a regular expression to deine an allowed form value
•	 Add a polyill to provide support for less capable browsers
•	 Use CSS3 to easily and lexibly style an HTML5 form

Conquer Forms with HTML5 and CSS3

[238]

HTML5 forms
Here's the scenario: for our example And the winner isn't... responsive website. I've
decided that I'd like people to be able to vent their own frustration at the turkeys that
have been picking up the award gongs. We'll be adding a form that let's people tell
us about the ilm they feel shouldn't have won, and the ilm they feel should have
taken its place.

The following screenshot shows how our basic form looks, with just a little basic
styling in Chrome (v16):

Chapter 8

[239]

Besides standard form input ields and text areas, we have a number spinner, a
range slider, and placeholder text for many of the ields. If we 'focus' (select) on that
particular ield the placeholder text is removed and if we lose focus without entering
anything (by clicking outside of the input box again) the placeholder text re-appears.
Furthermore, looking at this page in Google's Chrome browser, if we go ahead and
submit the form without entering anything, the following happens:

Conquer Forms with HTML5 and CSS3

[240]

So besides a couple of visual lourishes (the slider and spinner) we have some client-
side validation in place. As we've already noted, typically, to get a form working like
this would require JavaScript of one sort or another.

However, the great news is that all these user interface elements (including the
aforementioned slider, placeholder text, and spinner) and the form validation are
all being handled natively with HTML5 and no JavaScript is being employed. Let's
work through how the new form capabilities of HTML5 make this possible.

Understanding the component parts of
HTML5 forms
There's a lot going on in our HTML5 powered form, so let's break it down. The form
has been given an ID to aid styling and then an HTML5 hgroup for the title and
introductory text:

<form id="redemption" method="post">

 <hgroup>

 <h1>Oscar Redemption</h1>

 <h2>Here's your chance to set the record straight: tell us what
 year the wrong film got nominated, and which film should
 have received a nod...</h2>

 </hgroup>

The three sections of the form are then wrapped in a fieldset with a legend:

<fieldset>

<legend>About the offending film (part 1 of 3)</legend>

<div>

 <label for="film">The film in question?</label>

 <input id="film" name="film" type="text" placeholder="e.g. King
 Kong" required aria-required="true" >

</div>

You can see from the previous code snippet that each input element of the form is
also wrapped in a div with a label associated with each input. So far, so normal.
However, within this irst input we've just stumbled upon our irst HTML5 form
features. After common attributes of id, name, and type we have placeholder.

Chapter 8

[241]

placeholder
The placeholder attribute looks similar to the following:

placeholder="e.g. King Kong"

Placeholder text within form ields is such a common requirement that the folks
creating HTML5 decided it should be built into the markup and supported by
browsers. Simply include the placeholder attribute within your input and the value
will be displayed by default until the ield gains focus. When it loses focus, if a value
has not been entered, it will re-display the placeholder text.

After the placeholder attribute, in the previous code snippet, the next HTML5 form
feature is the required attribute.

required
The required attribute looks similar to the following:

required aria-required="true"

In supporting HTML5 capable browsers, by adding the Boolean (meaning you
simply include the attribute or not) attribute required within the input element,
it indicates that a value is required. If the form is submitted without the ield
containing the requisite information, a warning message should be displayed. The
message displayed is speciic (both in content and styling) to both the browser and
the input type used. In addition to the HTML5 required value, in our example we
have also added the WAI-ARIA equivalent; aria-required="true". Unless there
is a good reason not to, include this WAI-ARIA version of the required attribute to
assist those using screen readers (if you remember, we looked at WAI-ARIA back in
Chapter 4, HTML5 for Responsive Designs).

Conquer Forms with HTML5 and CSS3

[242]

We've already seen what the required ield browser message looks like in Chrome.
The following screenshot shows the same message in Firefox (9):

The required value can be used alongside many input types to ensure a value is
entered. Notable exceptions are the range, color, button, and hidden input types
as they almost always have a default value.

Another HTML5 form attribute that can be added to input ields is autofocus.

Chapter 8

[243]

autofocus
The HTML5 autofocus attribute allows a form to be loaded with a ield already
focused (selected) ready for user input. The following code is an example of an input
ield wrapped in a div with the autofocus attribute added at the end:

<div>

 <label for="search">Search the site...</label>

 <input id="search" name="search" type="search" placeholder="Wyatt
 Earp" autofocus>

</div>

Be careful when using this attribute. Cross browser confusion can reign if multiple
ields have the autofocus attribute added. For example, if multiple ields have
autofocus added, in Chrome (v16) the last ield with the autofocus attributed
is focused on page load. However, Firefox (v9) does the opposite with the irst
autofocus ield selected.

It's also worth considering that some users use the space bar to quickly skip
down the content of a web page once it's loaded. On a page where a form has an
autofocused input ield, it prevents this capability; instead it adds a space into the
focused input ield. It's easy to see how that could be a source of frustration for users.

autocomplete
By default, most browsers aid user input by autocompleting the value of form
ields where possible. Whilst the user can turn this preference on and off within the
browser, we can now also indicate to the browser when we don't want a form or
ield to allow auto-completion. This is useful not just for sensitive data (for example
bank account numbers) but also if you want to ensure users pay attention and enter
something by hand. For example, for many forms I complete, if a telephone number
is required, I enter a 'spoof' telephone number. I know I'm not the only one that does
that (doesn't everyone?) but I can ensure that users don't enter an autocompleted
spoof number by setting the autocomplete attribute to off on the relevant input ield.
The following is a code example of a ield with the autocomplete attribute set to off:

<div>

 <label for="tel">Telephone (so we can berate you if you're
 wrong)</label>

 <input id="tel" name="tel" type="tel" placeholder="1-234-546758"
 autocomplete="off" required aria-required="true" >

</div>

Conquer Forms with HTML5 and CSS3

[244]

We can also set entire forms (but not ieldsets) to not autocomplete by using the
attribute on the form itself. The following is a code example:

<form id="redemption" method="post" autocomplete="off">

list (and the associated datalist element)
This list attribute and the associated datalist element allow a number of
selections to be presented to a user once they start entering a value in the ield. The
following is a code example of the list attribute in use with an associated datalist
wrapped in a div:

<div>

 <label for="awardWon">Award Won</label>

 <input id="awardWon" name="awardWon" type="text" list="awards">

 <datalist id="awards">

 <select>

 <option value="Best Picture"></option>

 <option value="Best Director"></option>

 <option value="Best Adapted Screenplay"></option>

 <option value="Best Original Screenplay"></option>

 </select>

 </datalist>

</div>

The value given in the list attribute (awards) refers to the id of the datalist.
Doing this associates the datalist with the input ield. Although wrapping the
options with a <select> element isn't strictly necessary, it helps when applying
polyills for older browsers.

Whilst the input ield seems to be just a normal text input ield, when typing in the
ield, a selection box appears below it (in supporting browsers) with matching results
from the datalist. In the following screenshot, we can see the list in action (Firefox
v9). In this instance, as B is present in all options within the datalist, all values are
shown to select from:

Chapter 8

[245]

However, when typing D instead, only the matching suggestions appear as shown in
the following screenshot:

This doesn't prevent a user entering anything else they want in the input box but it
provides another great way of adding common functionality and user enhancement
through markup alone.

HTML5 input types
HTML5 adds a number of extra input types, which amongst other things, enable us
to limit the data that users input without the need for extraneous JavaScript code.
The most comforting thing about these new input types is that by default, where
browsers don't support the feature, they degrade to a standard text input box.
Furthermore, there are great polyills available to bring older browsers up to speed.
We will look at these shortly. In the meantime, let's look at these new HTML5 input
types and the beneits they provide.

email
type="email" – supporting browsers will expect a user input that matches the
syntax of an e-mail address. In the following code example type="email" is used
alongside 'required' and 'placeholder':

<div>

 <label for="email">Your Email address</label>

 <input id="email" name="email" type="email" placeholder=
 "dwight.schultz@gmail.com" required aria-required="true">

</div>

When used in conjunction with required submitting a non-conforming input will
generate a warning message:

Conquer Forms with HTML5 and CSS3

[246]

Furthermore, many touch screen devices (for example Android, iPhone and so on)
change the input display based upon this input type. The following screenshot
shows how an input type="email" screen looks on the iPad. Notice the '@' symbol
for easy email address completion:

number
type="number" – supporting browsers expect a number to be entered in a number
type input ield. They also supply spinner controls by default, allowing users to easily
click up or down to alter the value. The following is a code example:

<div>
 <label for="yearOfCrime">Year Of Crime</label>
 <input id="yearOfCrime" name="yearOfCrime" type="number" min="1929"
 max="2015" required aria-required="true" >
</div>

Chapter 8

[247]

And the following screenshot shows how it looks in a supporting browser
(Chrome v16):

Implementation of what happens if you don't enter a number varies. For example,
Chrome (v16) clears the ield as soon as it loses focus without providing any
feedback whilst Firefox (v9) allows anything to be entered (defaulting to the
standard text input type). You'll notice in the previous code example, we have also
set a minimum and maximum allowed range similar to the following code:

type="number" min="1929" max="2015"

Numbers outside of this range (should) get special treatment. Browser
implementation is varied. For example, Chrome (v16) displays a warning whilst
Firefox (v9) does nothing.

url
type="url" – as you might expect, the URL input type is for URL values. Similar to
the tel and email input types, it behaves almost identically to a standard text input.
However, some browsers add speciic information to the warning message provided
when submitted with incorrect values. The following is a code example including the
placeholder attribute:

<div>

 <label for="web">Your Web address</label>

 <input id="web" name="web" type="url" placeholder="www.mysite.com">

</div>

The following screenshot shows what happens when an incorrectly entered URL
ield is submitted in Chrome (v16):

Conquer Forms with HTML5 and CSS3

[248]

Like type="email", touch screen devices often amend the input display based upon
this input type. The following screenshot shows how an input type="url" screen
looks on the iPad:

Notice the Go, forward slash (/), and .com keys? Because we've used a URL input
type they are presented by the device for easy URL completion (unless you're not
going to a .com site in which case, you know, thanks for nothing Apple).

tel
type="tel" is another contact information speciic input type. tel is used to signify
to the browser that the form expects a telephone number entered within that ield.
The following code is an example:

Chapter 8

[249]

<div>
 <label for="tel">Telephone (so we can berate you if you're
 wrong)</label>
 <input id="tel" name="tel" type="tel" placeholder="1-234-546758"
 autocomplete="off" required aria-required="true" >
</div>

Although, a number format is expected, on many browsers, even modern ones such
as Chrome v16 and Firefox v9, it merely behaves like a text input ield. They are
currently failing to provide a suitable warning message on form submission when
incorrect values are entered.

However, better news is that like the email and url input types, touch screen
devices often thoughtfully accommodate this kind of input with an amended input
display for easy completion; here's the tel input when accessed with an iPad
(running iOS 5):

Conquer Forms with HTML5 and CSS3

[250]

Notice the lack of alphabet characters in the keyboard area? This makes it much
faster for users to enter a value in the correct format.

search
type="search" – although the search input type works in the same manner as a
standard text input, some browsers render the code with some subtle differences.
The following code is an example:

<div>

 <label for="search">Search the site...</label>

 <input id="search" name="search" type="search" placeholder=
 "Wyatt Earp">

</div>

The following screenshot shows how the previous code looks in Firefox (v9); notice
the default styling of the input box is rectangular:

However, Chrome (v16) renders that same code differently by default with rounded
edges and a quick clear button on the right:

pattern
pattern=""—Be afraid, be very afraid (remember what ilm that's the tagline from?) In
my opinion, this tagline could just as easily be applied to regular expressions. If you
don't know what regular expressions are, I dare say ignorance is bliss. If you do, and
worse still, you understand them, the following section is for you.

Chapter 8

[251]

Learn about regular expressions

If you've watched 'The Exorcist' alone, in a graveyard, at midnight, on
Halloween you're possibly ready to learn about regular expressions:
http://en.wikipedia.org/wiki/Regular_expressions.

The pattern attribute allows you to specify, via a regular expression, the syntax of
data that should be allowed in a given input ield. The following code is an example:

<div>

 <label for="name">Your Name (first and last)</label>

 <input id="name" name="name" pattern="([a-zA-Z]{3,30}\s*)+[a-zA-
 Z]{3,30}" placeholder="Dwight Schultz" required aria-
 required="true" >

</div>

Such is my commitment to this book, I searched the Internet for approximately
458 seconds to ind a regular expression that would match a irst and last name
syntax. By entering the regular expression value within the pattern attribute, it
makes supporting browsers expect a matching input syntax. Then, when used in
conjunction with the required attribute, incorrect entries get the following treatment
in supporting browsers. In this instance I tried submitting the form without
providing a last name:

color
type="color" – the color input type produces a color picker in supporting
browsers, allowing users to select a color value in a Hexadecimal value. The
following code is an example:

<div>

 <label for="color">Your favorite color</label>

 <input id="color" name="color" type="color">

</div>

Conquer Forms with HTML5 and CSS3

[252]

Sadly, at present, browser support is scant. Only Opera (v11) seems to provide the
color picker. When the required color isn't initially shown, clicking the Other...
button at the bottom launches the OS's default color picker:

Date and time inputs
The thinking behind the new date and time input types is to provide a consistent
user experience for choosing dates and times. If you've ever bought tickets to an
event online, chances are that you have used a date picker of one sort or another.
This functionality is almost always provided via JavaScript (typically jQuery) but the
hope is to make this common necessity possible merely with HTML5 markup.

date
The following code is an example:

<input id="date" type="date" name="date" />

Similar to the color input type, native browser support is thin on the ground at
present, defaulting on most browsers to a standard text input box. Good ol' Opera
has already implemented the functionality though and the following screenshot
shows how that example code renders in Opera (v11):

Chapter 8

[253]

There are a variety of different date and type input types available. What follows is
a brief overview of the others.

month
The following code is an example:

<input id="month" type="month" name="month">

The interface allows the user to select a single month and provides the input as a
year and month for example 2012-06.

The following screenshot shows how it looks in the browser:

week
The following code is an example:

<input id="week" type="week" name="week">

When the week input type is used, the picker allows the user to select a single week
within a year and provides the input in the 2012-W47 format.

Conquer Forms with HTML5 and CSS3

[254]

The following screenshot shows how it looks in the browser:

time
The following code is an example:

<input id="time" type="time" name="time">

The time input type allows a value in the 24 hour format, for example 23:50.

It displays in supporting browsers with spinner controls but only allows relevant
time values:

datetime and datetime-local
The following code is an example:

<input id="datetime" type="datetime" name="datetime">

It looks similar to the following screenshot in Opera (v11):

Chapter 8

[255]

And looks even better on iOS devices as shown in the following screenshot:

Conquer Forms with HTML5 and CSS3

[256]

This input type creates date and time values (separated by a T) and then the time
zone (Z for UTC or a + or – for offset values). 25th October 2009 in UTC is shown as
follows:

2009-10-25T05:05:00Z

As UTC is, for most practical purposes, equivalent to GMT, it's easy to understand
offsets. For example, Paciic Standard Time (Los Angeles) is 8 hours behind GMT
(UTC -8 hours). That would be relected in the input value as shown:

2009-10-25T05:05:00-8:00

The datetime-local version works in exactly the same manner as datetime but
omits the time zone information.

Changing the step increments

You can alter the step increments (granularity) for the spinner controls
of various input types with the use of the step attribute. For example,
to step 4 hours at a time, enter the value of 4 hours as 14400 seconds
(60 (seconds), multiplied by 60 (minutes), multiplied by 4 (hours)).
Following is the datetime example amended to use 4-hour steps in
the time selector:

<input id="datetime" type="datetime" name="datetime" step="14400">

range
The range input type creates a slider interface element. The following code is an
example:

<input id="howYouRateIt" name="howYouRateIt" type="range" min="1"
 max="10" value="5" >

And the following screenshot shows how it looks in Safari (v5.1):

The default range is from 0 to 100. However, by specifying a min and max value in
our example we have limited it to between 1 and 10.

Chapter 8

[257]

One big problem I've encountered with the range input type is that the current value
is never displayed to the user. Although the range slider is only intended for vague
number selections, I've often wanted to display the value as it changes. Currently,
there is no way to do this using HTML5. However, if you absolutely must display
the current value of the slider, it can be achieved easily with some simple JavaScript.
Amend the previous example to the following code:

<input id="howYouRateIt" name="howYouRateIt" type="range" min="1"
 max="10"value="5" onchange="showValue(this.value)"><span
 id="range">5

We've added two things, an onchange attribute and also a span element with the
id of range. Now, we'll add the following tiny piece of JavaScript somewhere in
the page:

<script>

 function showValue(newValue)

 {

 document.getElementById("range").innerHTML=newValue;

 }

</script>

All this does is gets the current value of the range slider and display it in the element
with an id of range (our span tag). With a tiny bit of CSS styling to make the value
bigger and red, the following screenshot shows the effect–with the value updating as
the slider is moved:

There are a few other form related features that are new in HTML5 but
as they relate more to building applications and backend development

they've not been featured here. To read the W3C Editor's draft of the
HTML5 form section visit: http://dev.w3.org/html5/spec-
author-view/forms.html#forms.

Conquer Forms with HTML5 and CSS3

[258]

How to polyill non-supporting browsers
All this HTML5 form malarkey is all well and good. There seems however, to be
two things that put a serious dent in our ability to use them: disparity between how
supporting browsers implement the features and how to deal with browsers that
don't support the features at all. Thankfully, as ever, the web community has
found a way.

Back in Chapter 4, HTML5 for Responsive Designs I mentioned Modernizr (http://
www.modernizr.com), a fantastic JavaScript library that helps insert polyills for
browsers lacking the requisite HTML5/CSS3 features. "Webshims Lib", written by
Alexander Farkas (http://afarkas.github.com/webshim/demos/) is built on top of
this and the ubiquitous jQuery library to only load the form polyills (it can handle
poly-illing of other HTML5 features too) needed to make non-supporting browsers
handle our HTML5 forms. What's particularly great is the fact that as it utilizes
Modernizr's loading capabilities, the relevant polyills are only added if needed. It
adds very little lab to a web page if being viewed by a browser that supports these
HTML5 features natively. Older browsers, although they need to load more code
(as they are less capable by default), get a similar user experience, albeit with the
relevant functionality created with the help of JavaScript.

But it isn't just older browsers that beneit. As we've seen, many modern browsers
haven't implemented the HTML5 form features fully. Employing Webshims Lib to
the page also ills any gaps in their capability. For example, Safari (5.1) doesn't offer
any warning when a HTML5 form is submitted with any required ields empty.
Whilst the form isn't actually submitted, no feedback is given to the user as to what
the problem is: hardly ideal. With Webshims Lib added to the page, the following
happens in the aforementioned scenario:

So when Firefox (v9) isn't able to provide a spinner for a type="number" attribute,
Webshims Lib provides a suitable jQuery powered fallback. In short, it's a great tool,
so let's get this beautiful little package installed and hooked up and then we can
carry on writing forms with HTML5, safe in the knowledge all users will see what
they need to use our form (except those two people using IE6 with JavaScript turned
off—you know who you are—now pack it in!).

http://afarkas.github.com/webshim/demos/
http://afarkas.github.com/webshim/demos/

Chapter 8

[259]

First download Webshims Lib (http://github.com/aFarkas/webshim/downloads)
and extract the package. Now copy the js-webshim folder to a relevant section of
your web page. For simplicity, for this example I've copied it into the website root.

Now add the following code into the <head> section of your page:

<script src="js/jquery-1.7.1.js"></script>

<script src="js-webshim/minified/extras/modernizr-
 custom.js"></script>

<script src="js-webshim/minified/polyfiller.js"></script>

<script>

 //load all defined

 $.webshims.polyfill();

</script>

Let's go through this a section at a time. First I've linked to a local copy of the jQuery
library (get the latest version at www.jquery.com):

<script src="js/jquery-1.7.1.js"></script>

Next, I'm adding the versions of Modernizr and the polyiller JavaScript iles that are
within Webshims Lib:

<script src="js-webshim/minified/extras/modernizr-custom.js"></script>

<script src="js-webshim/minified/polyfiller.js"></script>

Finally, I'm telling the script to load all needed polyills:

<script>

 //load all defined

 $.webshims.polyfill();

</script>

And that's all there is to it. Now, missing functionality is automatically added by the
relevant polyill. Excellent!

Styling HTML5 forms with CSS3
Our form is now fully functional across all browsers and whilst we've got some very
basic styling, you and I both know, with CSS3 we can do so much better. Let's apply
some of the techniques we've already learned and used to spice up our form a little.
So far, the following are all the form speciic styles we have:

#redemption {

 width: 100%;

 font-family: 'ColaborateThinRegular';

 font-weight: 400;

http://github.com/aFarkas/webshim/downloads

Conquer Forms with HTML5 and CSS3

[260]

}

#redemption hgroup {

 margin-bottom: 20px;

}

#redemption div {

 width: 100%;

 margin-bottom: 15px;

 float: left;

}

#redemption span#range {

 float: left;

 font-size: 3em;

 width: 100%;

 color: red;

 clear: both;

 text-align: center;

}

#howYouRateThis,#yearOfCrime {

 text-align: right;

}

#redemption legend {

 font-style: italic;

 color: #434242;

 font-size: 0.8em;

 margin-bottom: 20px;

 float: left;

 width: 100%;

}

#redemption fieldset {

 border: 1px dotted #cccccc;

 padding: 2%;

 margin-bottom: 20px;

}

#redemption label {

 width: 40%;

 float: left;

}

#redemption input {

 height: 20px;

 font-size: 1em;

 width: 40%;

 float: right;

}

#redemption textarea {

Chapter 8

[261]

 height: 60px;

 font-size: 1em;

 width: 40%;

 float: right;

}

#redemption input#submit {

 text-decoration: none;

 height: 34px;

 font: 1.25em /* 36px ÷ 16 */ 'BebasNeueRegular';

 background-color: #b01c20;

 border-radius: 8px;

 color: white;

 float: right;

 margin-bottom: 10px;

 background: linear-gradient(top, rgb(241,92,96) 0%, rgb(176,28,32)
 100%);

 margin-top: 10px;

 box-shadow: 5px 5px 5px hsla(0, 0%, 26.6667%, 0.8);

 text-shadow: 0px 1px black;

 border: 1px solid #bfbfbf;

}

.polyfill-important .input-range,.polyfill-important .step-controls {

 float: right;

}

.polyfill-important .step-controls {

 margin-right: -20px!important;

}

The only point worthy of note here is that the inal two styles are only relevant when
some of the polyills are loaded.

So, irst off, I want to make each fieldset stand out a little more with a subtle
gradient background. The following is the amended CSS for the fieldset:

#redemption fieldset {

 border: 1px dotted #cccccc;

 padding: 2%;

 margin-bottom: 20px;

 background: #ffffff;

 background: linear-gradient(top, #ffffff 77%,#f2f2f2 100%);

 border-radius: 4px;

 box-shadow: 2px 2px 5px hsla(0, 0%, 16.6667%, 0.3);

}

Conquer Forms with HTML5 and CSS3

[262]

Aside from the border-radius, and background gradient, the only other thing we
have done is add a subtle box-shadow declaration.

As in many of the previous examples, I've omitted vendor-preixed versions of
the CSS3 declarations (background gradient, border-radius, and box-shadow in
this case).

The following screenshot is the output shown in Chrome:

Mixing color values

Throughout the examples you can see that I've mixed and matched
how colors have been deined. In some instances I'm using values like
red whilst I've also used HEX, RGB and HSL values too. In supporting
browsers there is no penalty for doing so. In a production site however,
you may choose to stick to one or two formats for consistency.

Chapter 8

[263]

So far, so good. But those text input ields are still looking a little drab. Let's add a
sprinkling of CSS3 there too using the following code:

input, textarea, select {

 border: 1px solid #bfbfbf;

 padding: 0.2em;

 font-size: 1.1em;

 line-height: 1.2em;

 background: #ffffff;

 background: linear-gradient(top, #ffffff 0%,#ededed 8%,#ffffff
 100%);

 border-radius: 4px;

 box-shadow: 2px 2px 5px hsla(0, 0%, 16.6667%, 0.1);

}

Again, we've got a background gradient there, a slight border-radius, and a
subtle box-shadow. The following screenshot shows how it looks in Chrome:

Conquer Forms with HTML5 and CSS3

[264]

I'm happy with that…Oh, hold on. Take a look at the slider at the bottom. That's
not what I want. I don't want those rules to affect the range slider so I'll amend my
selector and use one of the new CSS3 selectors to sort things out:

input:not([type="range"]), textarea, select{

 /* the styles */

}

I've used the :not pseudo selector to specify that I don't want the rule to apply to
inputs with the attribute type="range". Let's take another look in Chrome:

Excellent! That's what I was gunning for and CSS3 has made it easy to not only add
the relevant styles, but also to prevent adding them to elements on which they're
not wanted.

Chapter 8

[265]

Form-speciic CSS3 pseudo class selectors
Alongside all the fun CSS3 tools we already know about, there are also a few
form-speciic pseudo selectors:

•	 input:required: for required ields
•	 input:focus:invalid: for focused ields that have an invalid value
•	 input:focus:valid: for focused ields that have a valid value

So, let's use these to make three additional style rules as shown in the following
code examples:

input:required {

 border: 1px solid rgba(253, 8, 8, 0.29);

}

input:focus:invalid {

 background: url('../img/cross.png') no-repeat right;

 padding-right: 3px;

}

input:focus:valid {

 background: url('../img/tick.png') no-repeat right;

 padding-right: 3px;

}

The irst is a subtle border for required ields. The second adds a cross for when an
incorrect value has been included as the user types and the inal rule adds a green
tick when a correct value has been entered.

The following screenshot shows how that works in the browser (Firefox v9) on
page load:

Conquer Forms with HTML5 and CSS3

[266]

Now, if we focus (click into) on one of the required input ields, a red cross appears
(as we haven't yet entered a valid value):

If we go ahead and enter a valid value, the red cross image swaps out for our
green tick:

Using these new CSS3 pseudo class selectors makes for a nice, easy to implement,
layer of enhancement that adds to the overall user experience when illing in
the forms.

Chapter 8

[267]

Summary
In this chapter, we have learned how to use a host of new HTML5 form attributes.
They enable us to make forms more usable than ever before and the data they
capture more relevant. Furthermore, we can future proof this new markup by
using JavaScript feature detection and conditional loading of JavaScript polyill
scripts so that all users experience similar form features, regardless of their
browsers capability.

We're nearing the end of our Responsive HTML5 and CSS3 journey. We've covered
a lot of theory alongside our practical 'And the winner isn't' example website.
However, implementing responsive designs in the real world often presents further
challenges. How to handle a mass of navigation links on a small screen? How to only
load additional iles for the browsers that need them? In the inal chapter we will be
looking at some of these common issues (and their solutions) when implementing
responsive designs built with HTML5 and CSS3. We'll also revisit how best to deal
with some speciic shortcomings of common older browsers.

